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Abstract. Understanding the evolutionary relationships of threatened species provides an important framework for
making decisions about their conservation. However, unrecognised problems with the underlying phylogenetic analyses
may bias the decision-making process. Recent phylogenetic studies have improved our understanding of Meliphagidae,
but also indicate discordance between molecular datasets. Here, we examine the causes of this discordance using
maximum likelihood tree-building and network analyses of identically sampled datasets for four genetic loci. Our results
suggest that while we can be reasonably confident of relationships within species groups, discordance within and between
molecular datasets tends to obscure relationships towards the base of the meliphagid tree. This ongoing uncertainty likely
reflects differences in the sampling of markers and taxa between previously published analyses. To avoid the problems of
conflicting data we used divergence time analyses of only the most densely sampled marker, NADH-ubiquinone
oxidoreductase chain 2, to investigate the age and origins of the Fijian Meliphagidae. Our analyses suggest two temporally
distinct colonisations of the Fijian archipelago. The large-bodied honeyeaters arrived ,15.6 million years ago,
subsequently diversifying and spreading to Tonga and Samoa. In contrast, Myzomela appears to have arrived within
the last 5.0 million years. The phylogenetic results therefore imply that conserving the evolutionary diversity of
Meliphagidae in Polynesia requires that effort be spread across both the currently recognised taxa and geographical range.
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Introduction

The Fijian archipelago is isolated in the Pacific Ocean. Its island
neighbours include Tonga and Samoa to the east, but the closest
continental landmass is Australia some 3000 km to the west. Fiji
comprises over 330 islands ranging from four large volcanic
islands with rugged relief (e.g. Viti Levu, Vanua Levu,
Taveuni and Kadavu) to smaller low-lying limestone islands
(e.g. Kabara, Ogea, Vatulee and Vulaga). The archipelago, which
is part of the Polynesia–Micronesia biodiversity hotspot, has a



and New Guinea. Seventeen species are recorded from the
islands of Micronesia and Polynesia (Driskell and Christidis
2004; Gardner et al. 2010; Andersen et al. 2014). In Fiji, the
family is represented by five phenotypically and ecologically
distinctive species (Watling 2001). Three are large-bodied
species that primarily occur in forested areas. Foulehaio car-
unculatus and Gymnozyma viridis have broadly overlapping
geographical distributions, both occurring on the islands of Viti
Levu, Vanua Levu, and Taveuni, with F. carunculatus also
reaching the Lau Archipelago, Tonga and Samoa. The third
species, Xanthotis provocator, is restricted to the island of
Kadavu. Two smaller Myzomela species occupy a range of
habitats in the Fijian lowlands. Myzomela jugularis is relatively
common in Fiji whereas M. chermesina is restricted to the
northern islands of Rotuma.

Over the last 15 years phylogenetic analyses of nuclear and
mitochondrial DNA sequences have greatly improved our
understanding of the evolutionary relationships and taxonomy
of Meliphagidae (e.g. Cracraft and Feinstein 2000; Barker et al.
2004; Driskell and Christidis 2004; Norman et al. 2007



(Table 1



bootstrapping (i.e. ,50% BS). The Foulehaio–Xanthotis and
Myzomela–C. niger lineages also retained the same wider rela-
tionships, although both these relationships receive ,50% BS
(Table 1). The Foulehaio–Xanthotis and Myzomela–C. niger
clades were also recovered in the 12S and Fib5 trees (Fig. 1e

and 1d, respectively). However, their wider relationships differed
from those based on mitochondrial genes. For example, in the
optimal Fib5 tree the pairing of Myzomela–C. niger was nested
within a clade containing Glycichaera, Phylidornis melanops and
Ptiloprora; this relationship was strongly supported (Table 1).



NeighbourNet analyses of individual matrices suggested that
limited bootstrap support in phyML analyses were, at least in
part, due to internal conflict. That is, different positions within
the sequences supported contrasting relationships. For ND2 and
cytB this conflict was largely restricted to internal relationships;
networks were more box-like for these, with distal relationships
being more tree-like (not shown). The greater extent of box-like
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